$E^{O}_{cell} = E^{O}_{red} - E^{O}_{ox}$ Both values are standard reduction potentials taken directly from the table.

 $E^{O} > 0$ for a spontaneous reaction

Nernst eqn:
$$E = E^{O} - \left(\frac{0.0592}{n}\right) \log(Q)$$

moles of electrons = $\frac{\text{total charge}}{\text{Faradays constant}} = \frac{(\text{current} \times \text{time})}{(9.65 \times 10^4 \frac{\text{C}}{\text{mole e}^{-1}})}$

$$ln(K) = \frac{nFE^{0}}{RT}$$

At T = 298 K: $log(K) = \frac{nE^{0}}{0.0592}$ and $K = 10^{\frac{nE}{0.0592}}$

For a redox reaction: $\Delta G^{\circ} = -nFE^{\circ}$, where n = # of e^{-1} 's in the reaction, and F is Faraday's constant: 9.65×10^4 coulombs per mole of e^{-1} 's.

 $\Delta G^{\circ} = - RT \ln(K)$ and $\Delta G^{\circ} < 0$ for a spontaneous reaction

 $\Delta G = \Delta H^{\circ} - T\Delta S^{\circ}$ and $\Delta G^{\circ} = \Delta H^{\circ} - (298 \text{ K}) \times \Delta S^{\circ}$ If ΔH° and ΔS° are either both positive or both negative, then the reaction becomes either spontaneous or non-spontaneous when $\Delta G = 0$

$$\Delta G^{o}_{(rxn)} = \Sigma n \Delta G^{o}_{f}_{(products)} - \Sigma m \Delta G^{o}_{f}_{(reactants)}$$

$$w = -Fx \quad w = -mgh \quad w = -P(\Delta V) \text{ if } P \text{ is constant}$$

$$\Delta U = q + w$$

$$\Delta H = \Delta U + P(\Delta V) \text{ at constant pressure}$$

 $\Delta G = \Delta G^{\circ} + RT \ln(Q)$ R = 8.314 J/K

Atomic Weight of Cu is 63.55 g/mole

1 Ampere = 1 C/s